Surface controlled reduction kinetics of nominally undoped polycrystalline CeO2.

نویسندگان

  • Nicole Knoblauch
  • Lars Dörrer
  • Peter Fielitz
  • Martin Schmücker
  • Günter Borchardt
چکیده

Ceria is an interesting material for high temperature redox applications like solar-thermal splitting of CO2 and H2O. Technical implementation and reactor design for solar-thermal redox-based fuel generation requires reliable data for the chemical surface exchange coefficient and the chemical diffusivity of oxygen. The results of thermogravimetric relaxation experiments and equilibrium oxygen isotope exchange experiments with subsequent depth profiling analysis suggest that the reduction reaction of even dense samples of pure ceria (1 mm thickness, 93% of theoretical density) with a grain size of about 20 μm is surface reaction controlled. The chemical surface exchange coefficient exhibits a negative apparent activation energy (-64 kJ mol(-1)). This finding is corroborated by similar data from literature for the tracer surface exchange coefficient. The structure of the derived expression for the apparent activation energy further suggests that the chemical surface exchange coefficient should show only a very weak dependence on temperature for ceria doped with lower valence cations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocatalytic Degradation of Methyl Orange by CeO2 and Fe–doped CeO2 Films under Visible Light Irradiation

Undoped CeO2 and 0.50-5.00 mol% Fe-doped CeO2 nanoparticles were prepared by a homogeneous precipitation combined with homogeneous/impreganation method, and applied as photocatalyst films prepared by a doctor blade technique. The superior photocatalytic performances of the Fe-doped CeO2 films, compared with undoped CeO2 films, was ascribed mainly to a decrease in band gap energy and an increase...

متن کامل

Facile fabrication, characterization and enhanced heterogeneous catalytic reduction of 4-nitrophenol using undoped and doped ZrO2 nanoparticles

Here, we successfully developed the undoped, Ni2+, Cu2+, and Zn2+ doped Zirconia nanoparticles (ZrO2 NPs) by a simple co-precipitation method at room temperature and characterized by various physicochemical measurement techniques to investigate their structure, morphology, and sizes of the particles. The bandgap energy values of doped and undoped ZrO2 NPs were estimated using optical absorption...

متن کامل

Extreme high temperature redox kinetics in ceria: exploration of the transition from gas-phase to material-kinetic limitations.

The redox kinetics of undoped ceria (CeO2-δ) are investigated by the electrical conductivity relaxation method in the oxygen partial pressure range of -4.3 ≤ log(pO2/atm) ≤ -2.0 at 1400 °C. It is demonstrated that extremely large gas flow rates, relative to the mass of the oxide, are required in order to overcome gas phase limitations and access the material kinetic properties. Using these high...

متن کامل

Synthesis, characterization and computational study of nitrogen-doped CeO2 nanoparticles with visible-light activity.

Nitrogen-doped CeO2 nanoparticles were synthesized through a wet-chemical route. Nitrogen has been successfully incorporated into CeO2 nanoparticles and the nitrogen-doping level was also successfully controlled. The optical properties due to the different N-doping levels in CeO2 nanoparticles were characterized by UV-Vis diffuse reflectance spectroscopy (DRS), which showed a visible-light abso...

متن کامل

Green Synthesis of Nanoceria (CeO2) and Evaluation of Enzyme like Characteristics

In this study, the synthesis of ceria (CeO2) nanoparticles (NPs) was examined by the biosynthesis method. Then, enzyme-like features of synthesized nanoceria were examined. Peroxidase enzyme from fig (Ficus carica) was used as a synthesis and stabilizer reagent. Furthermore, it was investigated whether the obtained nanoceria has superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 8  شماره 

صفحات  -

تاریخ انتشار 2015